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methods 
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instituut-Lorents University of Leiden. PO Box 9506, 2300 RA Leiden, The Netherlands 

Received 24 June 1994, in final form 6 October 1994 

Abstract. The slave-boson mean-field method is used to study the two-dimensional Hubbard 
model. A magnetic phase d i a g m  allowing for pmagnet i sm,  weak and strong ferromagnetism 
and antiferromagnetism is constructed and compared to the corresponding phase diagram using 
the Hartree-Fock approximation (HFA). Magnetically ordered regions are reduced by a factor of 
about three along both the t / U  and density axes compared to the HFA. Using the spin-rotation- 
invariant formulation of the slave-boson method the helicity modulus is computed and for half 
filling is found practically to coincide with that found using variational Monte Carlo calculations 
with the Gutzwiller wave function. Off half filling the results can be used to mmpare with 
quantum Monte Carla calculatians of the effective happing paamter.  C o n u q  to the case of 
half filling, the slaveboson approach is seen to greatly improve the results of the HFA when off 
half filling. 

1. Introduction 

In the study of correlated electrons, for which both charge and spin degrees of freedom are 
relevant, the Hubbard model is an intriguing simplification of reality that still contains a great 
deal of the essential physics [l]. Although superconductivity has not been demonstrated 
in this model, it is able to explain or reproduce a large number of experimental results on 
the copper oxides which superconduct at high temperatures [2]. Despite such encouraging 
results, understanding of the model in dimensions of two and higher is still rather limited. 
Even when the most elementary mean-field approximation, the Hai-tree-Fock approximation, 
is invoked, the phase diagram cannot be determined in full [3], since inhomogeneous phases, 
like spiral phases or domain walls, are able to supersede simple ferro- or antiferromagnetic 
phases. The possibility exists that more complicated phases not considered so far are 
also important. Rigorous techniques like quantum Monte Carlo and exact diagonalization 
are limited to temperatures which may be too high and lattices which may be too small, 
respectively. Therefore it is of interest to employ approximations which go beyond the 
Hartree-Fock approximation (HFA). 

Some years ago Kotliar and Ruckenstein introduced, for the Hubbard model, the 
technique of using slave bosons to keep closer track of the site occupancy than is done in 
the HFA. If a further approximation is made, the so-called 'slave-boson mean-field' (SBMF) 
approximation, this approach was shown to be equivalent to the approximation scheme of 
Gutzwiller for the Hubbard model [4]. In a parallel development it was shown by Vollhardt 
and Metmer that the Gutzwiller approximation scheme becomes exact in the limit of an 
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infinite number of spatial dimensions, whereas the HFA does not become exact in this limit 
[S, 61. Therefore, just as in classical statistical physics, mean-field theory is a good starting 
point to study a specific model (because fluctuations become increasingly less relevant when 
increasing the dimension), for quantum models the SBMF approximation is a good starting 
point. In any case, it is expected to be an improvement over the HFA. In this connection, 
it is of interest to note that Ole6 and Zaanen compared the Gutzwiller approximation (CA) 
with the HFA in a two-band model of copper oxide planes and showed that the GA is a g o d  
approximation for correlations at small length scales [7]. More recently the slave-boson 
approach of Kotliar and Ruckenstein has been refined in order to make it spin-rotation 
invariant 18, 91. 

In this paper, we make a detailed comparison of the SBMF and Hartree-Fock 
approximations to the (one-band) Hubbard model on a two-dimensional square lattice. 
Where possible we also compare to quantum Monte Carlo calculations. By using the 
analytical result for the density of states of freely hopping electrons on the square lattice 
all calculations can conveniently be performed for a lattice of infinite size using one- 
dimensional integrals (over energy) only. Although we will mostly present results for 
the ground state (T = 0), the formulation we present is to a large extent valid for finite 
temperatures as well. A further advantage of the SBMF approach is that, in principle, 
it is valid for the whole range of Hubbard repulsion strengths and electron densities. 
First, we construct a ground-state phase diagram allowing only for the simple magnetic 
phases: paramagnetic, antiferromagnetic, weakly and strongly (i.e. partially and fully 
polarized) ferromagnetic. We determine all first-order and continuous transitions between 
these phasest. Although this approach may not give much information on the exact phase 
diagram (for instance, it is known that phases with spiralling magnetization supersede the 
antiferromagnet when going off half filling), it gives a clear impression of the improvement 
of the SBMF approximation over the HFA. Next, we derive an expression for the helicity 
modulus or spin stiffness in the SBMF approximation using the spin-rotation-invariant 
formulation and compare (for half filling) to previous calculations of the helicity modulus 
in the HFA, as well as using the Gutzwiller wave function in a variational Monte Carlo 
calculation 112, 141. It turns out that in the SBMF approximation, apart from a negligible 
contribution, the helicity modulus is completely determined by the average kinetic energy 
(as is the case in the HFA) and therefore equivalent to the effective hopping parameter. 
When comparing the SBMF results for the effective hopping parameter to HFA and QMC 
calculations the improvement with respect to the HFA is only a few per cent at half filling 
and practically coincides with the results of variational Monte Carlo calculations using the 
Gutzwiller wave function, but the improvement is substantial off half filling. 

The paper is organised as follows: in section 2, we briefly introduce the slave- 
boson mean-field method for the Hubbard model and present the free energy for the 
antiferromagnetic, ferromagnetic and spiral phases as well as the corresponding consistency 
equations. In section 3, we construct the ground-state phase diagram for the simple magnetic 
phases listed above and compare to the corresponding HFA phase diagram. An expression 
for the helicity modulus is derived and its connection to the effective hopping parameter is 
discussed in section 4. The SBMF results are compared to both the HFA and QMC calculations 
where possible. The last section contains a discussion of the results, and draws some 
conclusions. 

P J H Denteneer and M Blaauboer 

t S a m  of the results on the SBMF phase diagram were also obtained in [lo]. A similar analysis using the 
Kotliar-Ruckenstein approach for the symmetric Anderson lattice model was given in [Ill. 



Helicily modulus in the Hubbard model using slave bosons 153 

2. Slave-boson mean-field method 

The Hamiltonian for the Hubbard model is given by 

t where ci0 creates an electron at site i with spin U, ni, = ciCcio, tij is the one-electron 
transfer integral between sites j and i (tij equals t if i and j are n m e s t  neighbours and 
zero otherwise), U the on-site repulsion (U > 0), and p the chemical potential (p  = U / 2  
corresponds to a half-filled lattice, i.e. n = z io(n io)  = I). The Hubbard model allows 
for four different occupancies of a single site: it can be empty, singly occupied by either 
a spin-up or spin-down electron or doubly occupied (by electrons of opposite spin). This 
leads to the idea of introducing four different kinds of ‘slave’ boson, one for each of the 
possible occupancies. In order for this to become a bookkeeping device one introduces the 
constraints that at each site there is always exactly one boson present and that it is of the 
kind corresponding to the electron occupancy. If e ,  p t ,  p ~ -  and d denote the annihilation 
operators for the four kinds of boson, these constraints are 

for all i and U =t, 4. (3) t t .  t ciocio. = pi0pro + d i d  
The interaction term in the Hamiltonian (1) can now be replaced by one containing only the 
counting operator for d bosons. In order for the boson presence to keep in correspondence 
with the electron occupancy for each site, the hopping term in the Hamiltonian needs to 
be adjusted by connecting to each electron annihilation operator ci,, the following boson- 
transformation operator 

(4) 

In fact this choice for i is not unique [15] and we follow [4] by making a choice which 
in the case of U = 0 gives the correct result if a subsequent saddle-point approximation is 
made 

i. - t .  t - eip,, f pi,-&. 

In the physical subspace, defined by (2) and (3), of the enlarged boson4ectron Hilbert 
space, the Hamiltonian 

has the same matrix elements as the original Hamiltonian in the original Hilbert space 
containing only electron states. Therefore, up to here only a reformulation of the original 
problem has been achieved. However, if now in the functional integral formulation the 
saddle-point approximation of time. and position-independent Bose fields is made, a set 
of equations results which is similar to those found in ‘the Hartree-Fock approximation. 
but more general. This approximation is called the slave-boson mean-field (SBMF) 
approximation. For comparison, the HFA can be obtained in such a functional integral 
formulation by first applying a suitable Hubbard-Stratonovich transformation and then 
making the saddlepoint approximation for the original problem [I@. For further details on 
the functional integral formulation for the Hubbard model and the subsequent saddle-point 
approximation we refer to previous papers on this subject [4, 8, 9, 15, 171. Here, we just 
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mention that the choice (5) is expected to be a reasonable choice also for larger U, since 
in the SBMF approximation it leads to the Gutzwiller approximation (see below), in which 
the density of doubly occupied sites is explicitly optimized. It is however by no means 
excluded that for very large U a better choice can be made by takiig into account known 
properties of the model in this limit. Until now no proposals along these lines have been 
made. As a word of caution we mention that not only the non-uniqueness of (5). but also 
its explicit form, may lead to problems when going beyond the mean-field approximation 
by trying to include fluctuations. It has very recently been claimed that (5) is not a good 
starting point for treating fluctuations [18]. Since here we do not attempt to go beyond the 
mean-field level, we abstain from expanding on this problem. 

In the next three subsections, we present the expressions for the free energy of the 
ferromagnetic, antiferromagnetic and spiral phases. Only for the spiral phase do we use 
explicitly the spin-rotationally invariant formulation of [17]. It turns out however that for 
the ferromagnetic and antiferromagnetic phases the invariant formulation reduces to the 
non-invariant formulation, so no generality is lost by using the non-invariant formulation 
from the outset for these phases. For the ferromagnet and antiferromagnet we also give 
the consistency equations for the appearing self-consistent fields, which must be obeyed 
for the free energy to become minimal. To some extent this is a repetition of previously 
published results [IO, 171, but they are given for the reader's convenience and to establish 
the notation. 

P J H Denteneer and M Blaauboer 

2.1. Ferromagnetic phase 

For the ferromagnetic phase one assumes a non-zero homogeneous magnetization m, even 
if a magnetic field is absent. To be able to calculate the magnetic susceptibility we also 
include a magnetic field h in the Hamiltonians H and HsB by adding a term 

H,, = -h ani,. (7) 
ilr 

Here and in the following we adopt the convention that if U does not appear as an index it 
attains the values +1 and -1 if the corresponding index is t and .I, respectively. In order 
to treat the density of electrons n and magnetization m on an equal footing, we introduce 
a slightly different definition for the free energy per site, to be denoted by rp. For the 
ferromagnet our free energy is defined as 

(8) 
1 

qF = --In Tre-B('SB+'"6) + pit + hm. 
BN 

It is given by (see also [4, lo]) 

In [I + e-BEa(k)] + Od2 + ,En + Xm (9) 
1 

(OF -- 
pN k,o 

where 

E,,(k) = qot(k) -ox - /1 (10) 

t ( k )  = -2t(cosk, +cask,) (11) 

with 

the band structure of freely hopping electrons on a square lattice. The density n and 
magnetization m are given by: n = nt  + nb and m = nt - n4 with n,  = (ni,,). Since in 
principle the electrons have been integrated out in obtaining (9), n and m can be understood 



Heliciry modulus in the Hubbard model using slave bosons 155 

as a shorthand for the Bose fields p f  and p~ via the relation: n, = pz +, d2 (which is the 
average of constraint (3)). The parameters /I and are an effective chemical potential and 
effective magnetic field, respectively, which incorporate the Lagrange multipliers A?) used 
to enforce the constraints (3) 

The Lagrange multiplier A(')  associated with constraint (2)  has disappeared because the 
average of this constraint must hold. In fact, both constraints are only satisfied on average 
in the saddle-point approximation. The band-renormalization factor q,, appearing in (10) is 
in this approximation of time- and position-independent Bose fields a function of n, m and 
d (as follows directly from (4) and (5)) 

2 
[d(1 - n  +d2)(n + om - 2d2) +ddn  - om - 2dz 

(n+om)[1 - i ( n + o m ) ]  
q d n ,  m d )  = (zj,,zio) t = ~~~ ~ . (14) 

We note that if this qc is rewritten as a function of nt, nJ and d one exactly recovers the 
expression for the band renormalization in the Gutzwiller approximation (see [19]; our d2 
is called d theret). This would not be true if another choice for zjo than (5) had been made. 

The sum over k in (9) is over the whole Brillouin zone of the square lattice. In the limit 
of an infinitely large lattice, which can be treated after the approximations made, the resulting 
integral over the (two-dimensional) Brillouin zone can be rewritten as an (onedimensional) 
integral over energy using the density of states (DOS) of freely hopping electrons. For the 
square lattice this DOS, N(E), is known analytically 

where K ( x )  is the complete elliptic integral of the first kind [ZO]. Employing the DOS the 
free energy is 

with E,,(&) = qo& - oh - @. Unless explicitly stated otherwise integals over E run from 
-CO to m (the relevant integration range is of course limited by (15)). 

For a given interaction strength U ,  p~ is now given as a function of the five variables 
n .  m, d ,  ji and h, whereas p and h are control parameters, regulating (although not directly 
in this slave-boson approach) the density and magnetization. The optimal values for the five 
variables must be found from the three minimization conditions: aqF/ad = 0, aqp/ap = 0, 
aylF/ah = 0, as well as from the two equations arising from the Legendre bansform between 
grand potential (function of /I and h)  and free energy (function of n and m): aqF/am = h 
and aqF/an = p. Applying these conditions to (16) results in 

t In [I similx renomalizarian factors are derived in an alternative manner. 
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where qrU denotes the first partial derivative of qc with respect to U (= n, m, d )  and we 
introduced the abbreviations 

(22) 

(23) 

with the Fermi-Dirac distribution, f(E) = [l +eoE]-'. The five equations (17)-(21) need 
to be solved self-consistently for given U ,  p and h and the results can be inserted in (16) to 
obtain the corresponding free energy.-In practice, we will often be interested in calculations 
for a fixed density n,  in which case the last equation (21) does not appear (k disappears 
from the problem, however 6 remains). Expressions for partial derivatives of qg are given 
in appendix A. 

The above allows us to compute the free energy of three different phases: the 
paramagnetic phase (PM), for which m =~ 0 if h = 0, the strong ferromagnet (SF), for 
which m = n and both are non-zero even if h = 0, and the weak ferromagnet (WF), for 
which m e n and both are non-zero even if h = 0. In section 3, we will obtain the lines 
in the (t/U, n )  diagram of first-order phase transitions between these phases. In order to 
obtain the line of the continuous phase transition between paramagnet and ferromagnet (the 
ferromagnet can be either strong or weak), one needs to find where the susceptibility x of 
the paramagnet diverges. An expression for x is derived in appendix B. 

2.2. Antiferromagnetic p h e  

For the antiferromagnetic phase we divide the square lattice in two sublattices, such that 
points on one sublattice have only points of the other sublattice as nearest neighbours. 
Furthermore, we assume a non-zero staggered magnetization m,, i.e. the magnetization is ms 
on one sublattice and -m, on the other. To be able to calculate the staggered susceptibility 
we add a staggered-magnetic-field term to the Hamiltonians 'H and 'Hss: 

%ag.s = -~c hi,,Vnia (B) 
in 

where hi,$ equals h, on one sublattice and -h, on the other. The saddle-point approximation 
of time- and position-independent Bose fields on each of the two sublattices separately 
(introducing staggered Lagrange multipliers as well) results in a 2 x 2 problem (for each 
U separately, only one-electron state with IC and IC + Q couple, Q (n. H)) for the 
quasiparticle spectrum, which is easily diagonalized. Analogously to the ferromagnet, we 
define the 'free energy' per site for the antiferromagnet as 

(2.3 
1 

rpAF = __ in Tr e-wsB+nm88.s) + p n  f h,m,. 
BN 

It is given by 
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where 

E(k)  = . tJ@(k)  + x: - f i  (27) 
and we have again introduced an effective chemical potential ,? and an effective magnetic 
field &. The prime indicates that the sum over k i s  over the magnetic Brillouin zone only 
(k, .t kr E [-H, HI). The band-renonnalization factor qs is now a a-independent quantity 
because of the staggering 

qs(n, ms, d )  (zj0zio)AF = z A ~ z B ~  = Z ~ Z J  (28) 

where 
J(1- n + dz)(n + mns - 2d2) + dJn  - um, - 2d2 

zo = (29) 
l / (n  + omS) (1 - (n + am,/2)) 

As for the ferromagnet, the free energy can be expressed as an integral over the DOS of 
freely hopping electrons, N(E) 

~ I M  = -- dsN(&) In [1 + + Ud2 +f in  +&ms. B 'S 
For convenience we restrict ourselves to densities n < 1; in that case~only the negative 
square root in (27) is relevant and we have in (30) 

E(E) = - J ~ : E ~  + i: - ,?. (31) 
The consistency equations for the antiferromagnet are obtained in the same way as for the 
ferromagnet and read 

4sd - U=-& 
2d 

where we have defined 

Expressions for partial derivatives qw of qs are given in appendix C. ~ A F  is a function of the 
five variables n, m,, d ,  6 and x,, whereas F,and h, are control parameters. Calculating 
for fixed U / t  and n, means that the last consistency equation (36) becomes irrelevant again 
and the four remaining variables must be found self-consistently from the four remaining 
consistency equations. To compute the free energy the staggered field h, is taken to be zero. 
This free energy may be compared to the free energies of the three phases discussed in the 
previous subsection and lines of first-order transitions in the @/U, n )  plane may be found 
(see section 3). We note that the equations for the paramagnet can also be found from the 
above equations for the antiferromagnet by putting m, = 0 if h, = 0 (then also i, = 0). In 
order to find the transition line for the continuous phase transition betwen antiferromagnet 
and paramagnet an expression for the staggered susceptibility xs is derived in appendix D. 
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2.3. Spiral phase 

To obtain the spiral phase the magnetization vector is assumed to vary in space as: 

P J H Denteneer and M Blaauboer 

mi = m (cos(q. Ri), sin(q. Ri), 0). (38) 
In [17], the spin-rotation-invariant formulation is used to compute the free energy qsp for 
this phase. For details of this calculation we refer to [S, 171; here it suffices to quote the 
result (in our notation) 

'psp = - (39) 

with U = f l .  The parameters z+ are functions of n, m and d ;  in terms of the zo (formula 
(29) with m, replaced by m) they are given by 

z+ = 4 (ZT f Z J  . (41) 

The parameter p = p. - A:) is again an effective chemical potential, whereas J . 9  and 
I.(') are the Lagrange multipliers arising from the constraint (3) when made spin-rotation 
invariant+. We did not include any explicit magnetic field in the Hamiltonian in studying 
the spiral phases. One may verify that for q = (0,O) and q = (IT, r), (40) reduces to the 
expressions (10) and (27) for the ferromagnet and antiferromagnet, respectively. In terms 
of the z+ the band-renormalization factors are given by qe = (z+ +oz-)' and q. = z: - 22. 

For the spiral phase we do not give the consistency equations as we did for the 
ferromagnet and antiferromagnet, since we are only aiming at a simple phase diagram 
which does not include the spiral phases. Moreover, the consistency equations and free 
energy cannot be expressed as one-dimensional integrals over a density of states because 
of the spiralling vector q involved. Therefore, the consistency equations need to be solved 
numerically on a finite lattice. The regions in the phase diagram where spiral phases 
dominate the simple magnetic phases were calculated in [17] and [21]. In this paper, we 
will only use the expressions above to derive a formula within the SBMF approximation for 
the helicity modulus (or spin stiffness) and effective hopping parameter in section 4. 

3. Magnetic phase diagram 

We compute, in the SBMF approximation, the complete (i.e. all first-order and continuous 
phase transitions are included) ground-state magnetic phase diagram for the Hubbard model 
on a square lattice allowing for the four simple magnetic phases, paramagnet (PM), weak 
ferromagnet (WF), strong ferromagnet (SF) and antiferromagnet (AF). In their original paper, 
Kotliar and Ruckenstein 141 only calculated the lines where the PM becomes unstable towards 
ferromagnetic or antiferromagnetic ordering (continuous transitions), whereas Evans [IO] 
also included some first-order transitions, but not all, so that an incomplete picture emerged. 

t In the spin-rotation-invariant formulation, constraint (3) gives rise to a scalar Lagrange multiplier A:;' as well 
as a vector Lagrange multiplier A('). Far a spiral phase the latter wsults in another scalar A(') = IA"/ because it 
must show the same spatial variation as m in (38). 
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First, the regions in the (4t/U. n )  plane where ferromagnetism (either WF or SF) 
and antiferromagnetism can occur are determined, by calculating the lines where the 
homogeneous and staggered susceptibilities, x and xs. of the FM diverge. In appendices 
B and D expressions for x and x. are derived. The condition that the denominator in 
these expressions vanishes (generalized Stoner criterion) provides an additional equation 
to be solved in conjunction with the consistency equations for the PM (see section 2.1). 
In this way, for fixed n. the additional equation fixes the (critical) U / r  value for which 
the susceptibility diverges. The resulting lines are displayed in figure l(a) and agree with 
previously published results [4, 101. 

Now, using the formulae in sections 2.1 and 2.2 all first-order phase-transition lines in 
the (4t/U, n) diagram are computed. Since no susceptibilities are required, h and h, are 
taken to be zero. In principle, for each of the four phases for fixed values of U/t and n 
the energy is found by solvingthe consistency equations simultaneouslyt. For the SF and 
PM this problem simplifies somewhat: for the SF 'the set of equations (17)-(20) is reduced 
by one (since m = n) and for the PM we have m = 0. For each pair of phases one then 
finds a line in the (4t/U, n)  plane where the two energies are equal. The results of such 
calculations are displayed in figure l(a). In principle there are six such lines, but the first- 
order PWm-transition line coincides with  the^ continuous PWAF transition. Note however 
that the continuous PM/F transition and the first-order PWWF transition differ, implying that 
the magnetization in the WF phase does not vanish on the PM/WF-transition line (in contrast 
to the result of the Hartree-Fock approximation; see below). 

Taking into account all four phases, the phase diagram of the Hubbard model on a 
square lattice in the SBMF approximation of figure l(b) emerges, in which all interrupted 
lines denote first-order transitions and the full line a continuous (PM/m) transition. We 
now discuss the phase diagram in comparison with the same phase diagram as obtained in 
the Hartree-Fock approximation (HFA) and in comparison with previously published SBMF 
results. 

The corresponding, i.e., allowing for the same four phases, phase diagram to figure 
l(b) in the HFA is shown in figure l(c). A similar diagram was given previously in three 
dimensions by Penn [23] and in two dimensions by Hirsch [24], but in the latter the non- 
monotonic behaviour of the F/AF transition line was missed and the region of WF was not 
determined. Long has given the PM/F/AF phase diagram 'in HFA using a constant density 
of states; in that case no extremum in the F/AF transition occurs [25]. Another surprising 
feature of figure l(c), besides the maximum in the F/AF line, is the fact that the WF/SF 
transition line is found to oscillate slightly around the line of the continuous PF line., The 
difference in these curves is very small, but we have ascertained that it is not due to 
mxnerical inaccuracies. Thermodynamically such behaviour is allowed; it only means that 
along the P/F boundary the transition is sometimes continuous and sometimes first order. 
In comparing figure l(b) and figure l(c) it should be noted that they are topologically the 
same, but that because of the difference in~scale on both the density and 4t/U axes, the 
SBMF has reduced the magnetically ordered regions considerably with respect to the HFA. 
Furthermore, the region where WF dominates has grown at the expense of the SF phase. In 
table 1, we list the location of the 'tripod' points (i.e., points where three phases meet; the 
AF/SF/WF and PM/SF/WF points are triple points, i.e., points where three first-order transitions 
meet), as well as the renormalization factor obtained in going from the HFA to the SBMF 
approximation. Globally speaking this factor is about three for the hole density 8 and also 

~ 

t Using the analytically known density of States (15) this may be conveniently done with the program MATHEMATIC\ 
[221. Some care is required in integrating through the logarithmic singularity of N(E)  in E = 0. 
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Figure 1. Ground-state (4t/LI, S) phase diagram of the Hubbard model on a square lattice. 
restricted to simple magnetic phases: paramagnet (PM), antiferromagnet (AF), weak (w) and 
smng (SF) ferromagnet. 6 is the density of holes: 1 - n. (a) Construction diagram showing all 
continuous and first-order transition lines obtained in the slave-boson mean-field approximation 
(SBMF). (b) phase diagram in the SBMF and (c) corresponding phase diagram in ule HmtreeFock 
approximation. Note the difference in s a l e s  of (b) and (c). 
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Figure 1. Continued. 

about three for t / U  (if the ferromagnetic region is considered as a whole). Since the HFA 
overestimates the importance of magnetic ordering [XI,  the SBMF approximation is clearly 
an improvement. The critical hole density above which antiferromagnetism cannot occur 
is determined by the continuous PWAF transition and is given by 8tf = 0.21 in SBMF. 
More interestingly, the critical hole density above which ferromagnetism cannot occur is 
in SBMF determined by the first-order PWSF transition and given by exactly 8,' = f ,  as a 
simple argument can show (see e.g. [21]). The latter value agrees very well with the result 
8,' = 0.29 obtained from calculations using a variational wave function [26]. Remarkably, 
also high-temperature series expansions for the Hubbard model find for U / z  + CO a value 
of about 0.33, below which ferromagnetic nearest-neighbour correlations occur [U], and 
a value 'near &' (E 0.27), below which a strong separation of energy scales for spin 
and translational degrees of freedom is observed 1281. Although these features in the high- 
temperature series expansions appear to be temperature independent over a wide temperature 
range, extrapolation to T = 0 is cumbersome in such expansions [29]. We also note that the 
x-' = 0 line is nowhere in the diagram a phase boundary; therefore the continuous P W F  
transition, in this approximation and contrary to the HFA result, is preempted by first-order 
PMIWF or PWSF transitions. 

A calculation of the phase diagram similar to ours was previously performed by Evans 
[lo]. However. the more cumbersome PWWF and AF/WF first-order transitions were not 
computed and for the WF/SF transition only the limit m = n and d = 0 in the WF was taken. 
The latter determination turns out only to give an upper bound (in t/ U, for fixed n)  for the 
WF/SF first-order transition computed by comparing energies, as it should. As a result the 
final phase diagram of [lo] is obtained by removing from figure l(a) the PWWF and M/WF 
lines and replacing the WF/SF line by one extending from (0.15,O.O) to (0.0,0.38) in the 
( 4 t / U ,  8) plane (8 = 1 - n). Evans then appears to call WF only the tiny, triangleshaped, 
region at the centre of our WF region (although this is not very clear from figure 1 in [lo]). 
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Table 1. Comparison of location of Uipod pdints (where three phases meet) in (41/U. 6 )  phase 
diagram between HarVeeFock approximation (HF) and slave-boson mean-field approximation 
(SBMF). Also the crilical hole densities S, for antiferromagnetism (AF) and ferromagnetism (F) to 
o c c u  in both approximations are wmpwcd. The last column gives the ratio of the HF and SBMF 

results in each case. 

SBMF HF HF/SBMF 

4l/U 

AF/WF/PM 0.183 0.548 3.0 
WF/SF/PM 0.057 0.526 9.2 
s 

AF~VFJSF 0.107 0.551 5.2 

AF/WF/SF 0.067 0.25 3.7 
AF/WF/PM 0.187 0.42 2.2 
WF/SF/PM 0.275 0.45 1.6 
6, 
AF 0.21 0.42 2.0 
F I 3.0 I 

This assignment, however, is thermodynamically not justified since two of the boundaries 
then correspond to PM/SF and PWAF transitions. Also the third boundary in that case (PWF) 
is not a boundary for the WF region as computed by us. 

To conclude the discussion of the phase diagram in figure 1, we stress that the actual 
ground-state phase diagram of the Hubbard model, even when constructed within either the 
HF or SBMF approximation, will also have to include inhomogeneous phases like domain 
walls and spiral phases. For instance, it was shown within the SBMF approximation that 
spiral phases supersede the antiferromagnet immediately when going off half filling and also 
the ferromagnetic phases shrink somewhat in favour of certain spiral phases [17, 211. Our 
detailed determination of the simple phase diagram only serves to study the consequences 
of the SBMF approximation when compared with the HFA. 

4. Helicity modulus and effective hopping 

A crucial quantity in the study of quantum-ordered states is the helicity modulus, which 
is the stiffness associated with a twist of the order parameter, or, equivalently, with phase 
fluctuations of a complex order parameter. For the attractive Hubbard model, which exhibits 
superconducting or superfluid order, the helicity modulus corresponds to the superfluid 
density, whereas for the repulsive Hubbard model it is the spin stiffness of the AF ordered 
phase at half filling. In previous papers, the helicity modulus, denoted by ps. was calculated 
for the 2D Hubbard model both in the HFA and by variational Monte Carlo methods [U, 131. 
Also a comparison with exact diagonalization and quantum Monte Carlo results was made, 
showing that the HFA renders quantitatively reasonable results for ps [14]. For the repulsive 
Hubbard model this could only be shown at half filling. Since we have already seen that 
the SBMF approximation is an improvement over the HFA, it is of interest to see what it 
will give for ps. In this section, we first derive an expression for ps within the SBMF 
approximation and use it to compute p.. Then the connection between ps and the effective 
hopping parameter is discussed, leading to calculations of the effective hopping both at 
half filling and off half filling. The SBMF results are compared to results from the HFA and 
quantum Monte Carlo results. 

To obtain ps, we can make use of the results for the spiral phase in section 2.3. In the 
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AF phase the order parameter is the staggered magnetization. This can be viewed as a spiral 
phase with spiral vector q = Q (n, x ) .  A small twist in the AF order parameter then 
corresponds to.a spiral vector which deviates slightly from Q 

q = (n, n) - G. (42) 
The helicity modulus ps is given by 

with the free energy per site ‘p given by (39) and where < is the modulus of 6. To facilitate 
the computation it is advantageous to perform a further manipulation. Since the spectrum 
is periodic in reciprocal space and we are going to integrate over the full Brillouin zone, it 
is allowed to shift the spectrum over iij, so that (40) becomes (if in turn we rename i@, 
for notational convenience. to q) 

Eq,v(R) (z: + z!) [[t(k + q) - t (k  - 41/21] - fi  
+!J [ (2: - 2 y  [ [ t ( k  + q) + r(k - s ) /2 I l2  

+ [z+z-[ t (k  + q) - t(k - q)l + h(2qZ} 
L I Z  

(44) 

with v =~ il. After this manipulation, the occurring sum t (k + q) + t (k - q) is even in 
the small parameter q (=Iql) and the difference is odd. The same is not true for the small 
parameter C in the occurring sum and difference t ( k )  f r(R + Q - i j)  in (40). In this 
notation, ps is given by 

If we now restrict ourselves to ground-state properties (T = 0) and densities less than half 
filling (n c l), we only need to expand the U = -1 branch for small q (and integrate over 
the Brillouin zone (Bz)) to obtain q(q) - ‘p(0) to order q2.  We find (taking q = (4.0) for 
convenience) that the term proportional to q vanishes after integrating over the BZ, and that 
ps is given by 

with 

E ( k )  = ,/q,2t2(k) + h2 (47) 
and the band renormalization qs is 

(48) 
We have omitted the superscript (2 )  on h. We remark that if the above shift in the BZ is 
not performed, a much longer expression for ps results; the expression is equivalent to (46), 
but this is not trivial. We further note that the T = 0 HFA result of 112J is recovered by 
omitting the second term in the Bz sum and putting qs equal to unity. 

In order to compute ps for fixed density n, according to section 2.2, the following set 
of equations needs to be solved self-consistently (for T = 0 and h, = 0; cf. (32)-(35)): 

2 2  4. = z+ - z - .  

N d  m, = 2h de 
(&2 + iz)”2 

(49) 
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where x = hjq, and p is determined by the fixed n 
4 

n = 2 L  dEN(E). 

In terms of the parameters of section 2.2, we have ,G = Jp2 - l : /qs  (x, is called h here). 
The band renormalization qs is given by (28) and (29). In terms of an integral over the 
DOS, the energy of the AF state (per site) and the spin stiffness ps are given by 

d s N ( E ) m +  Ud2 + hq,m, (53) 

where N"(E) is the weighted density of states 
1 

NV(€) G - [vt(k)I28(E - t ( k ) )  
N k  

which for a square lattice can be calculated analytically (see [30]) 

(55) 

for I E ~  < 4t and zero otherwise. K ( x )  and E ( x )  are the complete elliptic integrals of the 
first and second kind, respectively. We remark that using the weighted density of states the 
finite-temperature result for ps obtained in the HFA 1121 can also be written as an integral 
over energy. 

Table 2. Self-consistent parameters for antiferromagnetic ground stake at half filling in slave- 
boson mean-field approximation as a function of UJr. The ground-state energy for UJr = 0 
equals -16/rr2 exactly. 

UII .I m, d -eAF 4 s ( [ . m S . d )  

0 
1 
2 
3 
4 
6 
8 
IO 
12 
16 
20 

2W.I 

0 
0.042 
0.24382 
0.55345 
0.94059 
1.89519 
2.98950 
4.11613 
5.23030 
7.39950 
9.51220 

100 

0 
0.093 693 
0.293 750 
0.461 272 
0.592 152 
0.768 048 
0.863 161 
0.9~13 012 
0.940 510 
0.967337 
0.979 394 
0.999 8W 

0.5 
0.478519 
0.444454 
0.404445 
0.364523 
0.292458 
0.235612 
0.193 926 
0.163 654 
0.123 965 
0.099 524 
0.009 998 

1.62114 
1.381 12 
1.16716 
0.986744 
0.838871 
0.623639 
0.485 I04 
0.393528 
0.330002 
0.248782 
0.199420 
0.019976 

1 
0.994 185 
0.980 426 
0.966375 
0.956 338 
0.951 682 
0.959 478 
0.968 953 
0.976425 
0.985641 
0.990505 
0.999 900 

Since only at half filling is the AF phase the ground state, we first restrict ourselves 
to this case: n = 1 (p = 0). In table 2, self-consistent parameters are given for various 
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U l t ;  the corresponding energy eAF and band renormalization qs are also given. These 
results agree with those published previously by Hasegawa [31]. In particular, we note that 
qs never deviates from unity by more than 5%, implying that slave bosons at half filling 
renormalize the Hmee-Fock results only by a small amount. As concerns ps, for the case 
of half filling the integral containing &(E)  plays no role since for n = 1 we have z- = 0 
(as is easily verified from (29) and (41)). In table 3 and figure 2, we compare the results for 
ps obtained in the SBMF with those obtained previously using the HFA and using variational 
Monte Carlo calculations with an (antiferromagnetic) Gutzwiller wave function (GWVMC) 
[12]. The fact that slave bosons only renormalize the HF results a little is reflected in the 
fact that the SBMF and HF results never differ hy more than 7%. Note however that the SBMF 
result is always larger (except for very small U / t .  U / t  < 2.5), whereas qs, which enters as 
a factor in (54), is smaller than unity. The direct effect of qs is more than compensated by 
a renormalized (smaller) value of the antiferromagnetic gap h = iq.. A further observation 
from table 3 and figure 2 is that the SBMF results almost coincide with the GWVMC results. 
The difference between the results is an indication of the difference between the Gutzwiller 
approximation (which is equivalent to the present SBMF approximation, see the introduction) 
and the Gutzwiller wavefunction. Although these are not identical [6], the difference for 
the spin stiffness is not big, as shown in figure 2. Therefore the tedious variational Monte 
Carlo calculations for ,os can he replaced by the above set of equations which are exact 
(within the SBMF) and easy to solve. 

Table 3. Spin stiffness ps of the antiferromagnetic ground state at half filling as a function 
of U J t  as calculated in the Hartme-Fwk approximation (HFA). the slave-boson mean-field 
approximation (SBMf) and from variakiond Monte Carlo calculations using lhe Gutzwiller 
wavefunction (CWVMC). For U/[ = 0, ps equals 2/z2 exactly. For HFA and SBMF. results are 
for an infinitely large lanice: for OWVMC, results are for an 8 x 8 lattice. except for U/[ = 2,3 
which are for 20 x 20 and 14 x 14 lattices. resoectivelv (see also 1121). 

0 
I 
2 
3 
4 
6 
8 
IO 
12 
16 
20 - 

0.2026 
0.2023 
0.1960 
0.1820 
0.1650 
0.1332 
0.1090 
0.0912 
0.0781 
0.0602 
0.0488 - 

0.2026 

0.1953 
0.1847 
0.1713 
0.1421 
0.1162 
0.0962 
0.0814 
0.0618 
0.0497 

0.2012- 

- 

- 
- 
0.197 
0.185 
0.172 
0.141 
0.117 
0.098 
0.083 
- 
- 

On very general grounds it can be derived that the helicity modulus (spin stiffness for 
positive U and superfluid weight for negative U )  comprises a ‘direct’ part proportional to 
the average kinetic energy ( T )  and a part related to the current-current correlation function 
A- 1321. The HFA effectively neglects the A, part, whereas GWVMC calculations find only 
a negligible correction to the kinetic part - $ ( T )  [12]. Since in formula (46) the first term is 
exactly - Q ( T )  in the SBMF approximation and at half filling the second term equals zero, we 
can conclude that also the SBMF approximation only gives the kinetic part of ps. In [I41 it 
was estimated (by comparing to appropriate exact diagonalization calculations and quantum 
Monte Carlo (QMC) calculations) that the HFA overestimates ps at half filling by 68%, 40%, 
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---HFA 
- SBMF 

P S  

0 

u/t 
Figure 2. Helicity modulus f i  for the repulsive Hubbard model on a square lattice at half filling 
as a function of U / t .  Shown are results from the HarUee-Fock approximation (HFA), from 
the slave-boson mean-field approximation (SBMF) and from variational Monte Carlo calculations 
using a Gutzwiller projected wave function (GWYMC. from [IZI). 

38% and 36% for U / r  = 4,8, 10 and 20, respectively. However, if one compares the kinetic 
energy found in the HF and SBMF approximations with QMC calculations for n = 1 (the latter 
are obtained from [34]), one concludes that the approximations perform very satisfactorily. 
This is illustrated in figure 3, where we plot the effective hopping integral t e ~ ,  defined by 
normalizing the average kinetic energy for interaction constant U with that for U = 0 

(57) 
teff (CLCj, +c:,cio)o 
f (C!& + cj,c:,,u=0’ t 
-=  

The denominator is easily evaluated as the energy of the PM phase in the HFA, since for U = 0 
the HFA is exact and there is no potential energy. The QMC data are taken at sufficiently 
low temperature (pt = 16) for this comparison with T = 0 results to be meaningful. We 
note that a similar comparison of SBMF and QMC data was made in [33]; in that paper the 
SBMF approach was formulated as a 14-dimensional optimization problem. By comparing 
their figure 2(b) with our figure 3, the results from our simple formula (54) are found to 
be the same. A surprising feature of figure 3 is perhaps not so much that the SBMF results 
approximate the QMC results so well, but that the HFA results do the same already. 

We now discuss the off-half-filling case; since off half filling there exists a spiralling 
vector qo for which the spiral phase has lower energy than the AF phase, we cannot call 
ps as given by (54) the stiffness of the ground state any longer. Instead, the expression 
(54) has the interpretation of the stiffness of the AF phase with respect to a small deviation 
from spiralling vector ( x ,  x ) .  In order to compute the stiffness of the Found state one 
would have to perturb the spiral phase with vector qo, but this is beyond the scope of the 
present paper. Here we only investigate how well the effective hopping (or, equivalently, 



Helicily modulus in the Hubbard model using slave bosons I 67 

I ~ I . 1 ~ 1 ~ 1 ~ 1 * 1 ~ 1 ' 1 ' 1  - 
n=l 

- SBMF - 
QMC 

, 0.6 - - 

0.4 - 

2 4 6 8 10 12 14 16 lE 20 O.Zo * I * I I 1 ' g 1 * ' I ' I 

U/t  
Figure 3. Effective hopping integral tcN/l for the repulsive Hubbard model on a square lanice 
ar half filling as a function of U / l .  Shown are results from the Ham-Fock approximation 
(HFA), the slave-boson meawfield approximation (SBMF) and quantum Monte Carlo calculations 
(QMC, from [341). 

the kinetic energy) of the twc-dimensional Hubbard model off half filling is described by 
the first term in (54). In figure 4(a), we compare tm/t obtained from Hartree-Fock and 
SBMF approximations (for T '= 0) with low-temperature ( p t  = 6) QMC data (the latter are 
obtained from [35]). The results are displayed as a function of density n for the one value 
of U / t  (A) for which there are QMC data available. From the phase diagrams in figure 1 it 
is clear that in both the HFA and SBMF approximation an AF~PM transition occurst for some 
critical density n, (nc = 0.86 in SBMF and n, = 0.76 in HFA for U / t  = 4, the former is not 
shown in figure l(a)). Below ne (paramagnetic phase), teff/t equals unity in the HFA and 
equals the band renormalization q (=qt = qL) in the SBMF approximation. Clearly the SBMF 
approach is a significant improvement over the HFA; the agreement with the QMC data is less 
good in the density interval just off half filling. This is most probably caused by the fact 
that for these densities the assumed (antiferromagnetic) phase in the SBMF approach is not 
the correct one. The same remark concerning [33] as made above for PI = 1 is appropriate 
here. Finally, in figure 4(b), we also show the results for the effective hopping integral for 
a few other values of U / t ,  for which no QMC data are available. The corresponding HFA 
curves are not shown, but the behaviour is similar to that for U / t  = 4: at half filling ten/t 
is somewhat below the SBMF result and rises to unity in going off half filling. The densities 
below which tes/t equals unity can be read off from figure l(c). We note that in figure 4(b) 
the non-differentiability at n, (which is close to 0.8 for U / t  = 8, 12, 16, as can be seen in 
figure l(a) and (b)) is less pronounced for U / t  = 8, 12,16 than it is for U / t  = 4. 

t If the restricted set of four phases is considered as before. 



168 P J H Denteneer and M Blaauboer 

(4)' ' I a I '  ' ' 

---HFA 
- SBMF 
D QMC 

0.5 1 
n 

O i  

Figure 4. Effective hopping inlegral tefi/t for the repulsive Hubbard model on a square lattice 
as a function of electron density n. (a) For U f t  = 4, results are shown from the Hartree-Fock 
approximation (WA), the slave-boson mean-field approximation (SBMF) and quantum Monte &lo 
calculations ( Q K  from [351), and @) for U / t  = 4,8. 12, and 16 from SBMF calculations (QMC 
results far Uft = 4 only). The dashed lines indicate the electron densities n, for which in the 
phase diagram in figure I(a) a continuous PMAF lransition takes place. For U / t  = 8. 12 and 16 
the value OF". is (3pproximalely) equal to 0.8 in each case. 

5. Discussiou and conclusions 

Above we have given a detailed account of calculations within the slave-boson mean-field 
(SBMF) approximation for the repulsive Hubbard model on a square lattice. We have focused 
on the phase diagram, a particular response function, the helicity modulus p s  and the related 
effective hopping integral. All calculations can be expressed in terms of a set of integral 
equations with onedimensional integrals over energy containing a density of states, which 
is known analytically for the square lattice. These equations are solved self-consistently. 

If for the ( t j U ,  n)  phase diagam we restrict ourselves to simple magnetic phases, the 
SBMF approach is found to reduce the magnetically ordered regions with respect to the 
HartreeFock approximation (HFA). Along the density axis the reduction is roughly a factor 
of three, whereas along the t j U  axis the reduction of the ferromagnetic region (weak 
and strong ferromagnetism together) is also a factor of three. In the SBMF approach the 
portion of weak ferromagnetism grows at the expense of the strong-ferromagnetism portion 
when compared to the HPA. The present SBMF phase diagram is more likely to be a good 
stafting point for more sophisticated approaches to the phase diagram than is the HFA phase 
diagram, because in an infinite number of dimensions the SBMF approach becomes exact (see 
the introduction). On the other hand, it is seen that the SBMF approach is not qualitatively 
different from the HFA, but rather a renormalized form of HFA. 

The new quantity that we obtain within the SBMF approach is the helicity modulus pa. 
At half filling, the results for ps practically coincide with those obtained using variational 
Monte Carlo calculations with a Gutzwiller wave function and are generally somewhat larger 
(about 5%) than those obtained in the HPA. The exact results are estimated to be smaller 
than the HFA results. This discrepancy is due to the neglect within the SBMF approach (as 
in the HFA) of the current-current correlation part of p5 .  The remaining kinetic part of 
ps agrees very well with quantum Monte Carlo (QMC) calculations of the kinetic energy 
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or effective hopping integral. Also off half filling, where our expression for p .  no longer 
has the interpretation of helicity modulus of the ground state, it is found to represent the 
effective hopping much better than the HFA. 

A number of extensions of the present work are possible. Most of the extensions 
discussed.below have already been performed within the HFA [I21 and since the SBMF 
approach turns out to, be a renormalized form of the HFA, the qualitative effect of such 
expansions on the present SBMF results can be predicted. A possible sequel to the present 
work (which was not attempted before for the HFA) is the calculation of the helicity modulus 
for the spiral or domain-wall phases, which supersede the AF ground sk te  that one has at half 
filling and which is the starting point for our calculated helicity modulus. Another extension 
is to introduce a homogeneous magnetic field h in the AF phase at half filling. Using the 
well known mapping between repulsive and attiactive Hubbard models (see e.g. [12]) the 
corresponding expression for ps then equals the superfluid density of the attractive (U c 0) 
Hubbard model off half filling (without a magnetic field). A final straightforward but 
tedious extension of the present results is to allow for finite temperatures. ~ The formalism 
set up above is perfectly capable of dealing with this more general case, but the calculations 
become somewhat more tedious than for T = 0. Furthermore, the interpretation of the SBMF 
phase diagram becomes more cumbersome for finite T ,  since ordered phases will continue 
to exist up to some critical temperature, whereas long-range order is not allowed in the 
exact solution in two dimensions because of the Mermin-Wagner theorem 1361. 
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Appendix A. Band-renormalization factor qo 

In this appendix expressions for partial derivatives of the band-renormalization factor qc 
for the ferromagnet are given. The formula for q,,, which is a function of density n, 
magnetization m and density of doubly occupied sites dZ, is repeated here (see (14)) 

For n, m and d in the physically relevant range (e.g.,~m should be less than or equal to n 
and dZ should be less than or equal to fn) q,, attains values between zero and unity, so the 
free electron bands are narrowed in the SBMF approximation. 

First partial derivatives qon, qom and qmd with respect to n, m and d ,  respectively, are 

where we have introduced the abbreviations 

Nc =.J(l - n + d 2 ) ( n + u m - 2 d 2 ) + d J n - g m - 2 d 2  (A5) 
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D , = n i - o m - f ( n + u m )  2 

e = J T Z F  
r, = Jn + o m  - ~ 2 .  

To determine where the susceptibility diverges (see appendix B), we also require qmm, 
the second derivative of qg with respect to m calculated at m = 0 (which is independent of 
0 )  

with 

No = Jz (d-2 + d) 

Appendix B. Homogeneous magnetic susceptibility for paramagnet 

In this appendix we derive a formula for the homogeneous magnetic susceptibility x in the 
paramagnetic phase: 

x = (Z)  
h=O 

The derivation proceeds as follows: in the paramagnet, we have m = 0 if h = 0 in the 
equations (17)-(21) of section 2.1. Then also = 0. The solutions of the consistency 
equations of the remaining variables we call no, 6 and ,io. Now we apply an infinitesimal 
magnetic field Sh. Then m and TI .  will acquire small non-zero values Sm and 6 1  and the 
other quantities will deviate slightly from their values for h = 0, because all are coupled 
through (17)<21). If we now work at a fixed density (Le., n is not allowed to deviate from 
no and equation (21) becomes irrelevant), we have four equations containing five small 
quantities. From these the required ratio am/ah is obtained. Working out this procedure, 
by expanding all equations to first order in the small quantities, it turns out (perhaps not 
surprisingly) that the equations for 6,i and 6d decouple from those for Sm, SA and 6h. 
Here we give the equations for the latter three quantities for the case T = 0 (for which the 
derivative of the Fermi-Dirac distribution is a convenient delta-function) 

Sm = aSm i- XOSA 
SA = Sh+ bSm +aSA 

where we have introduced the following notation 
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and q and qm are the functions q,, and qUm taken at m = 0 (see appendix A). Solving (B2) 
and (B3) for x finally gives the required formula for the susceptibility 

xo 
( l - ~ ) ~ - b X o '  X =  

A similar result was given in [lo], although there is a factor of two difference in the FO 
term in (B6). 

Appendix C. Band-rrnormalization factor qs 

In this appendix expressions for partial derivatives of the band-renomalization factor qs 
for the antiferromagnet are given. The formula for qs, which is a function of density n, 
staggered magnetization parameter m, and density of doubly occupied sites dZ ,  is repeated 
here (cf. (28) and (29)) 

( C l )  d n ,  m,, d )  = z(n, m,, d ) z h  -ms. d )  

where 

(1 - n + d2)(n + m, - W )  + d J n  - m, - 2dZ 
~ ~~~~~ ~~~ ~ ~ -. . (C2) z(n, m,, d )  = 

J ( n  + m d ( 1  - (n + m,/2)) 
Introducing the abbreviations N i  and the partial derivative of z with respect to m, 

Ni = / ( n  f m,) (I - T) 

the first partial derivatives with respect to ms and d are (since we always work at fixed 
density, the derivative with respect to n is not needed): 

qsm, =~z(n,  -ms, d )  (0) 
az(n, m,, d )  az(n, -m,,d) + z(n, m,, d )  

am, am, 1. (C6) 
(n - 2d2)(2n - 1 - 4dZ)  - mf (1 - n)n - 8d4 + (8n - 6)d2 

2 d d l  - n f &  
4sd = - + 

N+ 4d N- I J n2 - m: - 4nd2 + 4d4 

For the calculation of the staggered susceptibility (see appendix D) the second derivative 
of qs with respect to in, at m, = 0 is required; the formula is 

2( 1 - n + 2dZ) 
[ J m + d ] * ( n - Z d 2 ) -  n(2 - n)(n - 2d2) ' '"' E (.ma),., - n3(2 - n)3 

a2qs - 4n2 - 8n f 8  

Appendix D. Staggered magnetic susceptibility for the paramagnet 

In this appendix we derive a formula for the staggered magnetic susceptibility in the 
paramagnetic phase xs:  

xs = (2) 
ht=O 
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The procedure is as follows: the consistency equations (32fi(36) for the antiferromagnet in 
section 2.2 allow for a paramagnetic solution in which h, = 0 leads to m, = 0 as well as 
,is = 0. Starting from this solution, we apply (at a fixed density) an infinitesimal staggered 
magnetic field Sh,. This introduces small changes in the other parameters in particular m, 
and x, acquire small values Sm, and S i ,  (the changes in d and ji are irrelevant for the 
present discussion). Restricting ourselves to the T = 0 case, the two equations relating 6h,, 
Sm, and Si, are (expanding the consistency equations to first order in Sh,, Sm, and Si,)  

am, = xr,o ah, (D2) 
81, = Sh, + b, 6m, (D3) 

P J H Denteneer and M Blaauboer 

- 

where the following abbreviations are introduced 

-PI4 
bs = 2 q , , , ~ _  dEN(dE. 05) 

Here the parameter q is qr taken at m, = 0 (see appendix C). Solving (D2) and (D3) for xs 
one has 

A similar result was obtained in [lo]. 
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